比如
2019-10-29 15:50
来源:未知
点击数:           

2.《中学数学知识应用精编》,上海市中学生数学知识应用大竞赛委员会编写组著,华东理工大学出版社。

1.假设参加某一联赛的所有球队的实力数由小(实力强)到大(实大弱)可构成一个等差数列。并且认为等差数列的首项为1,公差为1。由此,一个联赛中的各个球队可以分别用一个数字代替,即,将所有n支参赛球队按实力由强到弱排列,则依次1,2,3,4,...,n。这样每场比赛就有一个对应的实力数之差。如实力数为3和7的两支球队之间的比赛,实力差是4。

所谓理论保级分数,就是指一般来讲,一个参赛球队只要达到了这个分数,无论别的球队的成绩如何,都能保证自己不会降级。这个分数无疑能给那些成绩不佳的球队的一个有效的参考,帮助他们调整策略。

3.假设统得出的每个实力差值对应的比胜、负、平的频率等于在理论上这些情况出现的频率。

虽然用这个程序计算的保级分数有时会与实际分数有一点差距,但在大多数情况下,这个程序能够较好地估计保级分数。

s:一场比赛中实力较强的球队获胜的概率。

二、定义变量

2.假设任何不可预知的因素与比赛结果无关。即比赛结果只与两支球队的实力差和主客场因素有关。如认为球队3主场与球队8的比赛,和球队1主场与球队6的比赛没有任何区别。

:一支球队i在所有比赛中的数学期望值之和。

但是球队的实力是一个很抽象的事物,不易计算和比较,为了能用数学语言描述它,可以为每个球队引入一个参数,能够较好的描述球队的实力称它为这个球队的实力数,我们可以定义随机变量x为一支球队在某一场比赛中的结果。它可能有三种情况,即胜(积3分)、平(积1分)、负(积0分〕。我们可以统计出每场比赛中两队的胜、平、负的频率(可近似地看成每种情况出现的概率)p,通过公式

一、统计随机变量x的分布

p:一场比赛中实力较强的球队战平的概率。

1.《问题解决的数学模型》,刘来福、曾文艺著,北京师范大学出版社。

去掉两个降级球队的分数,保级分数是29分。经过上述算法,将n=14,m=2代入,计算得来的理论保级分数是28.5259分,可见,与实际保级分数相差不大。

m:联赛结束后将要降级的球队数目。

解决问题

二、在统计概率过程中,随着n值不断增大,能找到的比赛数量越来越少。所以在n较大时,统计出的频率与理论上的频率的偏差也就比较大。

那么这个理论保级分数应该如何计算呢?怎样找到一种普遍适用于各国足球联赛的计算理论保级分数的方法呢?下面,我们建立一个数学模型解决这个问题。

我们选取了英格兰足球超级联赛、德国足球甲级联赛、意大利足球甲级联赛、中国的甲级联赛中1999~2000赛季的详细情况,并根据这些数据统计了当实力数差分别为1,2,3,...,19时,较强的一方获胜、战平、战败的频率。如下表:(单位:%)

模型建立与分析

由于以上几种可能产生误差的原因,这个模型计算的结果与实际保级分数有大约6分以下的差距。由于一般情况下这个模型计算的结果比较合适,所以认为这样的误差在可以接受的范围内。

误差分析

一、在模型假设中,假设各球队的实力数构成等差数列。这种假设与实际情况有一定差距。

再看看上赛季意大利足球甲级联赛,去掉3个降级的球队,实际保级分数是36分。将n=18,m=3代入,计算的理论保级分数是34.5975分,与实际情况也相差不大。

要想研究理论保级分数,就必须研究每支球队在每场比赛中的成绩。通过观察各大联赛的比赛情况,我们可以知道,球队的实力对比赛结果有很大的影响。比如,实力差距比较大的两支球队比赛,实力强的一方获胜的希望比较大。所以,如果讨论联赛的积分情况,就不能回避球队实力的差异问题。

f:一场比赛中实力较强的球队失败的概率。

求出一支球队在每场比赛中的数学期望。将所有比赛的数学期望值相加,就可以求出理论上这支球队的最后积分。另外,应该注意到主客场的差异对比赛结果的影响。所以,如果主客场情况不同,相应的胜、负、平频率也不同,数学期望值也就不同。

3.《数学建模精品案例》,朱道元编著,东南大学出版社。

当然,不仅是我国的足球联赛,其它各个国家的足球联赛,都会有保级分数的问题。

三、在实际比赛中,很多其它因索,如天气等都有可能影响比赛的结果。这个模型并没有考虑这些因素,所以无法避免由此产生的误差。

这个模型中可能产生误差的地方有如下几处:

一、模型假设

n:参加联赛的球队总数。

Copyright © 2003-2015 All rights reserved.http://www.shett.cn125555com,hk百彩网手机网免费大全,六合历史开奖记录,蓝月亮资料免费资料天下网版权所有